Integrating Automated and Interactive Protocol Verification

Achim D. Brucker SAP Research CEC Karlsruhe, Germany Sebastian A. Mödersheim DTU Compute

Integrating Two Approaches

Integrating two approaches:

Automated protocol verification	Interactive theorem proving
---------------------------------	-----------------------------

Goubault-Larrecq:

h1/paradox	Соq	
------------	-----	--

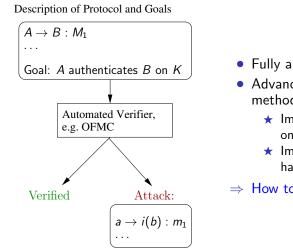
Our work:

Open-source Fixed-point	Isabelle/HOL
Model Checker	

Goal: best of both worlds

Completely automatic	High reliability
----------------------	------------------

Automated Protocol Verification



- Fully automated
- Advanced verification methods
 - ★ Impose subtle requirements on the specification
 - ★ Implementation may well have bugs

 \Rightarrow How to trust the verifier?

Interactive Theorem Proving

• Core (Proof Checker):

accepts only correct mathematical proofs for a given statement On this level: proofs are completely manual.

• Proof Assistance:

proof strategies for automatically handling large classes of subgoals. Thus interactive theorem proving.

- Programmable: development of customized strategies
- High reliability:

only need to trust the $\ensuremath{\mathsf{core}}$

• Successfully used for verifying protocols, e.g., by Paulson, Bella

Reference Model (Inductive Model)

• Inductive typed trace-based protocol model, similar to Paulson:

Example (NSL, role \mathfrak{A}) $t \in \mathbb{T}$ $NA \notin used (t)$ iknows $\{NA, A\}_{\mathsf{pk}(B)} \#$ state \mathfrak{A} [A, B, NA] # secret B $NA \# t \in \mathbb{T}$ $t \in \mathbb{T}$ state \mathfrak{A} $[A, B, NA] \in [t]$ iknows $\{NA, NB, B\}_{\mathsf{pk}(A)} \in [t]$ iknows $\{NB\}_{\mathsf{pk}(B)} \# t \in \mathbb{T}$

Reference Model: The Intruder

Standard Dolev-Yao style intruder, for instance:

$$\frac{t \in \mathbb{T} \quad \text{iknows } \{m\}_k \in [t] \quad \text{iknows inv}(k) \in [t]}{\text{iknows } m \# t \in \mathbb{T}}$$

Often the intruder restricted to a typed model.

Reference Model

Reference Model: Goals

Abstractions

- Abstract fresh data into finitely many equivalence classes, for instance:
 - ★ $NA \mapsto \mathfrak{N}_{\mathfrak{A}}(A, B)$
 - ★ $NB \mapsto \mathfrak{N}_{\mathfrak{B}}(B, A)$
- Consider the set of reachable events $\mathbb E$ (not reachable states).
- \Rightarrow popular FOL Horn-clause modeling style:

Example

 $\ensuremath{\mathbb{E}}$ is the least set of facts satisfying:

$$\Rightarrow \text{ iknows } \{\mathfrak{N}_{\mathfrak{A}}(A, B), A\}_{\mathsf{pk}(B)} \\\Rightarrow \text{ state } \mathfrak{A} [A, B, \mathfrak{N}_{\mathfrak{A}}(A, B)] \\\Rightarrow \text{ secret } B \mathfrak{N}_{\mathfrak{A}}(A, B) \\\text{ state } \mathfrak{A} [A, B, NA] \land \text{ iknows } \{NA, NB, B\}_{\mathsf{pk}(A)} \Rightarrow \text{ iknows } \{NB\}_{\mathsf{pk}(B)} \\ \dots \\\text{ secret } A M \in \mathbb{F} \land \text{ iknows } M \in \mathbb{F} \land \text{ honest } A \Rightarrow \text{ attack} \end{cases}$$

A protocol is secure ...

A protocol is secure ...

 iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \land \neg$ attack can produce the empty clause.

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \land \neg$ attack can produce the empty clause.

Standard Verification (ProVerif, SPASS...)

Resolution until

- empty clause derived: potential attack found
- saturated (no new clauses can be produced): protocol secure.
 - \star Verifiability: how can we be sure that saturation is correct?

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \land \neg$ attack can produce the empty clause.

Standard Verification (ProVerif, SPASS...)

Resolution until

- empty clause derived: potential attack found
- saturated (no new clauses can be produced): protocol secure.
 - \star Verifiability: how can we be sure that saturation is correct?
 - ★ This does not give us proof we can check!

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \wedge \neg \text{attack}$ can produce the empty clause.
- iff $\Phi \land \neg$ attack has a model

Idea (Goubault-Larrecq)

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \wedge \neg \text{attack}$ can produce the empty clause.
- iff $\Phi \land \neg$ attack has a model

Idea (Goubault-Larrecq)

• There may be a finite model!

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \wedge \neg \text{attack}$ can produce the empty clause.
- iff $\Phi \land \neg$ attack has a model

Idea (Goubault-Larrecq)

- There may be a finite model!
- A finite model is a proof of satisfiability we can check!

A protocol is secure ...

- iff the fact attack is not contained in the least Herbrand model of the Horn clauses Φ.
- iff $\Phi \land \neg$ attack is unsatisfiable.
- iff resolution on $\Phi \wedge \neg \text{attack}$ can produce the empty clause.
- iff $\Phi \land \neg$ attack has a model

Idea (Goubault-Larrecq)

- There may be a finite model!
- A finite model is a proof of satisfiability we can check!
- Use the finite model finder h1 or paradox. If successful, feed into Coq.

Our Approach

- The Horn clauses are already an abstract representation.
- Can we work on the level of Paulson's inductive trace model instead?

Key Ideas

In a typed model,

- $\bullet\,$ the fixedpoint $\mathbb E$ of the Horn clauses is finite
- and describes an invariant over the traces.

OFMC computes a fixedpoint ${\mathbb E}$ of abstract events.

- If attack $\in \mathbb{E}$, refine abstraction or validate attack.
- If attack $\notin \mathbb{E}$, use fixedpoint for verification in Isabelle.
- Label fresh nonces in the concrete model with their abstraction.

Example

 $t \in \mathbb{T}$ NA \notin used (t) label(NA) = $(\mathfrak{N}_{\mathfrak{A}}, A, B)$

iknows $\{NA, A\}_{\mathsf{pk}(B)} \#$ state $\mathfrak{A} [A, B, NA] \#$ secret $B NA \# t \in \mathbb{T}$

• Note: the label is merely an annotation, it does not change the model!

Key Ideas

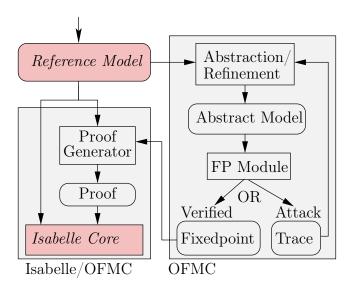
• The concretization of $\mathbb E$ is the set of all traces whose abstraction is in $\mathbb E \colon$

Definition (concretization)

$$\llbracket I \rrbracket = \{ (I, n) \mid n \in \mathbb{N} \}$$
$$\llbracket f \ t_1 \ \dots \ t_n \rrbracket = \{ f \ s_1 \ \dots \ s_n \mid s_i \in \llbracket t_i \rrbracket \}$$
$$\llbracket \mathbb{E} \rrbracket = \cup_{f \in \mathbb{E}} \llbracket f \rrbracket$$
$$\rrbracket' = \{ e_1 \# \dots \# e_n \mid e_i \in \llbracket \mathbb{E} \rrbracket \}$$

- Verify in Isabelle:
 - ★ All rules are closed under \mathbb{T}' , thus $\mathbb{T} \subseteq \mathbb{T}'$.
 - $\star~\mathbb{T}'$ does not contain an attack event, thus \mathbb{T} is safe.
 - \star ... completely automatically.
- If anything goes wrong, this proof generation simply fails. i.e. "we fail to convince Isabelle" in the worst case.

Architecture



Experimental Results

Protocol	FP	time [s]	Protocol	FP	time [s]
Andrew Secure RPC	113	1517	ISO three pass mutual	229	21448
Bilateral-Key Exchange	85	7575	NSCK	135	9471
Denning-Sacco	71	2549	NSL	75	117
ISO one pass unilateral	40	33	Non-Reversible Functions	196	21018
ISO two pass unilateral	56	77	TLS (simplified)	172	26982
ISO two pass mutual	104	442	Wide Mouthed Frog	87	1382

Conclusions and Outlook

- Combinations of the automated and interactive verification seem promising:
 - ★ Fully automated and relatively easy to use
 - ★ High reliability, because one only relies on a small core.
 - ★ May give highest assurance levels of common criteria at relatively low cost.
- Future Plans
 - ★ Improving fixed-point representation to scale better
 - ★ Larger classes of protocols (e.g., algebraic properties)
 - $\star\,$ Proof generator based on more specialized routines for efficiency